Source file src/internal/runtime/maps/group.go

     1  // Copyright 2024 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package maps
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/goarch"
    10  	"internal/runtime/sys"
    11  	"unsafe"
    12  )
    13  
    14  const (
    15  	// Maximum load factor prior to growing.
    16  	//
    17  	// 7/8 is the same load factor used by Abseil, but Abseil defaults to
    18  	// 16 slots per group, so they get two empty slots vs our one empty
    19  	// slot. We may want to reevaluate if this is best for us.
    20  	maxAvgGroupLoad = 7
    21  
    22  	ctrlEmpty   ctrl = 0b10000000
    23  	ctrlDeleted ctrl = 0b11111110
    24  
    25  	bitsetLSB     = 0x0101010101010101
    26  	bitsetMSB     = 0x8080808080808080
    27  	bitsetEmpty   = bitsetLSB * uint64(ctrlEmpty)
    28  	bitsetDeleted = bitsetLSB * uint64(ctrlDeleted)
    29  )
    30  
    31  // bitset represents a set of slots within a group.
    32  //
    33  // The underlying representation depends on GOARCH.
    34  //
    35  // On AMD64, bitset uses one bit per slot, where the bit is set if the slot is
    36  // part of the set. All of the ctrlGroup.match* methods are replaced with
    37  // intrinsics that return this packed representation.
    38  //
    39  // On other architectures, bitset uses one byte per slot, where each byte is
    40  // either 0x80 if the slot is part of the set or 0x00 otherwise. This makes it
    41  // convenient to calculate for an entire group at once using standard
    42  // arithemetic instructions.
    43  type bitset uint64
    44  
    45  // first returns the relative index of the first control byte in the group that
    46  // is in the set.
    47  //
    48  // Preconditions: b is not 0 (empty).
    49  func (b bitset) first() uintptr {
    50  	return bitsetFirst(b)
    51  }
    52  
    53  // Portable implementation of first.
    54  //
    55  // On AMD64, this is replaced with an intrisic that simply does
    56  // TrailingZeros64. There is no need to shift as the bitset is packed.
    57  func bitsetFirst(b bitset) uintptr {
    58  	return uintptr(sys.TrailingZeros64(uint64(b))) >> 3
    59  }
    60  
    61  // removeFirst clears the first set bit (that is, resets the least significant
    62  // set bit to 0).
    63  func (b bitset) removeFirst() bitset {
    64  	return b & (b - 1)
    65  }
    66  
    67  // removeBelow clears all set bits below slot i (non-inclusive).
    68  func (b bitset) removeBelow(i uintptr) bitset {
    69  	return bitsetRemoveBelow(b, i)
    70  }
    71  
    72  // Portable implementation of removeBelow.
    73  //
    74  // On AMD64, this is replaced with an intrisic that clears the lower i bits.
    75  func bitsetRemoveBelow(b bitset, i uintptr) bitset {
    76  	// Clear all bits below slot i's byte.
    77  	mask := (uint64(1) << (8 * uint64(i))) - 1
    78  	return b &^ bitset(mask)
    79  }
    80  
    81  // lowestSet returns true if the bit is set for the lowest index in the bitset.
    82  //
    83  // This is intended for use with shiftOutLowest to loop over all entries in the
    84  // bitset regardless of whether they are set.
    85  func (b bitset) lowestSet() bool {
    86  	return bitsetLowestSet(b)
    87  }
    88  
    89  // Portable implementation of lowestSet.
    90  //
    91  // On AMD64, this is replaced with an intrisic that checks the lowest bit.
    92  func bitsetLowestSet(b bitset) bool {
    93  	return b&(1<<7) != 0
    94  }
    95  
    96  // shiftOutLowest shifts the lowest entry out of the bitset. Afterwards, the
    97  // lowest entry in the bitset corresponds to the next slot.
    98  func (b bitset) shiftOutLowest() bitset {
    99  	return bitsetShiftOutLowest(b)
   100  }
   101  
   102  // Portable implementation of shiftOutLowest.
   103  //
   104  // On AMD64, this is replaced with an intrisic that shifts a single bit.
   105  func bitsetShiftOutLowest(b bitset) bitset {
   106  	return b >> 8
   107  }
   108  
   109  // count returns the number of bits set in b.
   110  func (b bitset) count() int {
   111  	// Note: works for both bitset representations (AMD64 and generic)
   112  	return sys.OnesCount64(uint64(b))
   113  }
   114  
   115  // Each slot in the hash table has a control byte which can have one of three
   116  // states: empty, deleted, and full. They have the following bit patterns:
   117  //
   118  //	  empty: 1 0 0 0 0 0 0 0
   119  //	deleted: 1 1 1 1 1 1 1 0
   120  //	   full: 0 h h h h h h h  // h represents the H2 hash bits
   121  //
   122  // TODO(prattmic): Consider inverting the top bit so that the zero value is empty.
   123  type ctrl uint8
   124  
   125  // ctrlGroup is a fixed size array of abi.SwissMapGroupSlots control bytes
   126  // stored in a uint64.
   127  type ctrlGroup uint64
   128  
   129  // get returns the i-th control byte.
   130  func (g *ctrlGroup) get(i uintptr) ctrl {
   131  	if goarch.BigEndian {
   132  		return *(*ctrl)(unsafe.Add(unsafe.Pointer(g), 7-i))
   133  	}
   134  	return *(*ctrl)(unsafe.Add(unsafe.Pointer(g), i))
   135  }
   136  
   137  // set sets the i-th control byte.
   138  func (g *ctrlGroup) set(i uintptr, c ctrl) {
   139  	if goarch.BigEndian {
   140  		*(*ctrl)(unsafe.Add(unsafe.Pointer(g), 7-i)) = c
   141  		return
   142  	}
   143  	*(*ctrl)(unsafe.Add(unsafe.Pointer(g), i)) = c
   144  }
   145  
   146  // setEmpty sets all the control bytes to empty.
   147  func (g *ctrlGroup) setEmpty() {
   148  	*g = ctrlGroup(bitsetEmpty)
   149  }
   150  
   151  // matchH2 returns the set of slots which are full and for which the 7-bit hash
   152  // matches the given value. May return false positives.
   153  func (g ctrlGroup) matchH2(h uintptr) bitset {
   154  	return ctrlGroupMatchH2(g, h)
   155  }
   156  
   157  // Portable implementation of matchH2.
   158  //
   159  // Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
   160  // note on bitset about the packed instrinsified return value.
   161  func ctrlGroupMatchH2(g ctrlGroup, h uintptr) bitset {
   162  	// NB: This generic matching routine produces false positive matches when
   163  	// h is 2^N and the control bytes have a seq of 2^N followed by 2^N+1. For
   164  	// example: if ctrls==0x0302 and h=02, we'll compute v as 0x0100. When we
   165  	// subtract off 0x0101 the first 2 bytes we'll become 0xffff and both be
   166  	// considered matches of h. The false positive matches are not a problem,
   167  	// just a rare inefficiency. Note that they only occur if there is a real
   168  	// match and never occur on ctrlEmpty, or ctrlDeleted. The subsequent key
   169  	// comparisons ensure that there is no correctness issue.
   170  	v := uint64(g) ^ (bitsetLSB * uint64(h))
   171  	return bitset(((v - bitsetLSB) &^ v) & bitsetMSB)
   172  }
   173  
   174  // matchEmpty returns the set of slots in the group that are empty.
   175  func (g ctrlGroup) matchEmpty() bitset {
   176  	return ctrlGroupMatchEmpty(g)
   177  }
   178  
   179  // Portable implementation of matchEmpty.
   180  //
   181  // Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
   182  // note on bitset about the packed instrinsified return value.
   183  func ctrlGroupMatchEmpty(g ctrlGroup) bitset {
   184  	// An empty slot is   1000 0000
   185  	// A deleted slot is  1111 1110
   186  	// A full slot is     0??? ????
   187  	//
   188  	// A slot is empty iff bit 7 is set and bit 1 is not. We could select any
   189  	// of the other bits here (e.g. v << 1 would also work).
   190  	v := uint64(g)
   191  	return bitset((v &^ (v << 6)) & bitsetMSB)
   192  }
   193  
   194  // matchEmptyOrDeleted returns the set of slots in the group that are empty or
   195  // deleted.
   196  func (g ctrlGroup) matchEmptyOrDeleted() bitset {
   197  	return ctrlGroupMatchEmptyOrDeleted(g)
   198  }
   199  
   200  // Portable implementation of matchEmptyOrDeleted.
   201  //
   202  // Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
   203  // note on bitset about the packed instrinsified return value.
   204  func ctrlGroupMatchEmptyOrDeleted(g ctrlGroup) bitset {
   205  	// An empty slot is  1000 0000
   206  	// A deleted slot is 1111 1110
   207  	// A full slot is    0??? ????
   208  	//
   209  	// A slot is empty or deleted iff bit 7 is set.
   210  	v := uint64(g)
   211  	return bitset(v & bitsetMSB)
   212  }
   213  
   214  // matchFull returns the set of slots in the group that are full.
   215  func (g ctrlGroup) matchFull() bitset {
   216  	return ctrlGroupMatchFull(g)
   217  }
   218  
   219  // Portable implementation of matchFull.
   220  //
   221  // Note: On AMD64, this is an intrinsic implemented with SIMD instructions. See
   222  // note on bitset about the packed instrinsified return value.
   223  func ctrlGroupMatchFull(g ctrlGroup) bitset {
   224  	// An empty slot is  1000 0000
   225  	// A deleted slot is 1111 1110
   226  	// A full slot is    0??? ????
   227  	//
   228  	// A slot is full iff bit 7 is unset.
   229  	v := uint64(g)
   230  	return bitset(^v & bitsetMSB)
   231  }
   232  
   233  // groupReference is a wrapper type representing a single slot group stored at
   234  // data.
   235  //
   236  // A group holds abi.SwissMapGroupSlots slots (key/elem pairs) plus their
   237  // control word.
   238  type groupReference struct {
   239  	// data points to the group, which is described by typ.Group and has
   240  	// layout:
   241  	//
   242  	// type group struct {
   243  	// 	ctrls ctrlGroup
   244  	// 	slots [abi.SwissMapGroupSlots]slot
   245  	// }
   246  	//
   247  	// type slot struct {
   248  	// 	key  typ.Key
   249  	// 	elem typ.Elem
   250  	// }
   251  	data unsafe.Pointer // data *typ.Group
   252  }
   253  
   254  const (
   255  	ctrlGroupsSize   = unsafe.Sizeof(ctrlGroup(0))
   256  	groupSlotsOffset = ctrlGroupsSize
   257  )
   258  
   259  // alignUp rounds n up to a multiple of a. a must be a power of 2.
   260  func alignUp(n, a uintptr) uintptr {
   261  	return (n + a - 1) &^ (a - 1)
   262  }
   263  
   264  // alignUpPow2 rounds n up to the next power of 2.
   265  //
   266  // Returns true if round up causes overflow.
   267  func alignUpPow2(n uint64) (uint64, bool) {
   268  	if n == 0 {
   269  		return 0, false
   270  	}
   271  	v := (uint64(1) << sys.Len64(n-1))
   272  	if v == 0 {
   273  		return 0, true
   274  	}
   275  	return v, false
   276  }
   277  
   278  // ctrls returns the group control word.
   279  func (g *groupReference) ctrls() *ctrlGroup {
   280  	return (*ctrlGroup)(g.data)
   281  }
   282  
   283  // key returns a pointer to the key at index i.
   284  func (g *groupReference) key(typ *abi.SwissMapType, i uintptr) unsafe.Pointer {
   285  	offset := groupSlotsOffset + i*typ.SlotSize
   286  
   287  	return unsafe.Pointer(uintptr(g.data) + offset)
   288  }
   289  
   290  // elem returns a pointer to the element at index i.
   291  func (g *groupReference) elem(typ *abi.SwissMapType, i uintptr) unsafe.Pointer {
   292  	offset := groupSlotsOffset + i*typ.SlotSize + typ.ElemOff
   293  
   294  	return unsafe.Pointer(uintptr(g.data) + offset)
   295  }
   296  
   297  // groupsReference is a wrapper type describing an array of groups stored at
   298  // data.
   299  type groupsReference struct {
   300  	// data points to an array of groups. See groupReference above for the
   301  	// definition of group.
   302  	data unsafe.Pointer // data *[length]typ.Group
   303  
   304  	// lengthMask is the number of groups in data minus one (note that
   305  	// length must be a power of two). This allows computing i%length
   306  	// quickly using bitwise AND.
   307  	lengthMask uint64
   308  }
   309  
   310  // newGroups allocates a new array of length groups.
   311  //
   312  // Length must be a power of two.
   313  func newGroups(typ *abi.SwissMapType, length uint64) groupsReference {
   314  	return groupsReference{
   315  		// TODO: make the length type the same throughout.
   316  		data:       newarray(typ.Group, int(length)),
   317  		lengthMask: length - 1,
   318  	}
   319  }
   320  
   321  // group returns the group at index i.
   322  func (g *groupsReference) group(typ *abi.SwissMapType, i uint64) groupReference {
   323  	// TODO(prattmic): Do something here about truncation on cast to
   324  	// uintptr on 32-bit systems?
   325  	offset := uintptr(i) * typ.GroupSize
   326  
   327  	return groupReference{
   328  		data: unsafe.Pointer(uintptr(g.data) + offset),
   329  	}
   330  }
   331  
   332  func cloneGroup(typ *abi.SwissMapType, newGroup, oldGroup groupReference) {
   333  	typedmemmove(typ.Group, newGroup.data, oldGroup.data)
   334  	if typ.IndirectKey() {
   335  		// Deep copy keys if indirect.
   336  		for i := uintptr(0); i < abi.SwissMapGroupSlots; i++ {
   337  			oldKey := *(*unsafe.Pointer)(oldGroup.key(typ, i))
   338  			if oldKey == nil {
   339  				continue
   340  			}
   341  			newKey := newobject(typ.Key)
   342  			typedmemmove(typ.Key, newKey, oldKey)
   343  			*(*unsafe.Pointer)(newGroup.key(typ, i)) = newKey
   344  		}
   345  	}
   346  	if typ.IndirectElem() {
   347  		// Deep copy elems if indirect.
   348  		for i := uintptr(0); i < abi.SwissMapGroupSlots; i++ {
   349  			oldElem := *(*unsafe.Pointer)(oldGroup.elem(typ, i))
   350  			if oldElem == nil {
   351  				continue
   352  			}
   353  			newElem := newobject(typ.Elem)
   354  			typedmemmove(typ.Elem, newElem, oldElem)
   355  			*(*unsafe.Pointer)(newGroup.elem(typ, i)) = newElem
   356  		}
   357  	}
   358  
   359  }
   360  

View as plain text